2. Komponen [back]
No | Nama Alat | Spesifikasi | Jumlah |
1 | Gambar layout komponen | 1 set | |
2 | Ground | 1 set | |
3 | power | 1 buah | |
4 | Solder | 1 buah | |
5 | Penyedot timah | 1 buah | |
6 | Tang potong | 1 buah | |
7 | Tang lancip | 1 buah | |
8 | Mistar baja | 1 buah | |
9 | Landasan solder | 1 buah | |
10 | Mata bor | 1 buah |
Grafik sensor infrared
Spesifikasi dari Sensor Infrared :
· 5VDC Tegangan operasi
· Pin I / O memenuhi standar 5V dan 3.3V
· Rentang: Hingga 20cm
· Rentang penginderaan yang dapat disesuaikan
· Sensor Cahaya Sekitar bawaan
· Arus suplai 20mA
· Lubang pemasangan
Konfigurasi Sensor Infrared :
Tr. Unipolar (MOSFET 2N7000)
Spesifikasi dari 2N7000 :
· Small signal N-Channel MOSFET
· Drain-Source Voltage (VDS) is 60V
· Continuous Drain Current (ID) is 200mA
· Pulsed Drain Current (ID-peak) is 500mA
· Gate threshold voltage (VGS-th) is 3V
· Gate-Source Voltage is (VGS) is ±20V
· Turn ON and Turn off time is 10ns each
NPN
(Bipolar Transistor Primitive)
Spesifikasi dari NPN :
Konfigurasi NPN :
1. Beragam tegangan suplai
2. Dapat bekerja dari catu daya tunggal
3. Dua penguat operasional yang dioperasikan secara individual
4. Gangguan kebisingan rendah di antara op-amp
5. Lebar Bandwidth (Penguatan Persatuan): 1 MHz
6. Penguatan Tegangan DC Besar: 100 dB
7. Tegangan Offset Input Rendah: 2 mV
8. Rentang tegangan mode umum masukan termasuk arde
9. Rentang tegangan input diferensial sama dengan tegangan catu daya
10. Kompensasi Frekuensi Internal
11. Operasi Pasokan Tunggal: +3,0 V hingga +32 V.
12. Operasi Pasokan Ganda: + 16V dan -16V
13. Pembuangan Arus Pasokan Sangat Rendah (500µA)
14. Suhu pengoperasian: -25ºC hingga 85ºC
15. Total disipasi daya: 830mW
LM35
Spesifikasi LM35 :
· Dikalibrasi Langsung dalam Celcius (Celcius)
· Faktor Skala Linear + 10-mV / ° C
· 0,5 ° C Pastikan Akurasi (pada 25 ° C)
· Dinilai untuk Rentang Penuh −55 ° C hingga 150 ° C
· Cocok untuk Aplikasi Jarak Jauh
· Biaya Rendah Karena Pemangkasan Tingkat Wafer
· Beroperasi Dari 4 V hingga 30 V
· Pembuangan Arus Kurang dari 60-μA
· Pemanasan Mandiri Rendah, 0,08 ° C di Udara Diam
· Hanya Non-Linearitas ± ¼ ° C Tipikal
· Output Impedansi Rendah, 0,1 Ω untuk Beban 1-mA
Konfigurasi LM35:
CAPACITOR
Sound Sensor
Spesifikasi dari Sound Sensor:
· Tegangan kerja: DC 3.3-5V
· Sensitivitas yang Dapat Disesuaikan
· Dimensi: 32 x 17 mm
· Indikasi keluaran sinyal
· Output sinyal saluran tunggal
· Dengan lubang baut penahan, pemasangan yang mudah
· Mengeluarkan level rendah dan sinyal menyala ketika ada suara
· Output berupa digital switching output (0 dan 1 high dan low)
Konfigurasi Sound Sensor :
• Indikator level dewan;
• Tegangan kerja: 2,0 V hingga 5,5 V;
• Ukuran papan PCB: 29mm x 16mm.
3.Dasar Teori [back]
FET
Gambar Bentuk dan Simbol Relay
Dibawah ini adalah gambar bentuk Relay dan Simbol Relay yang sering ditemukan di Rangkaian Elektronika.
Prinsip Kerja Relay
Pada dasarnya, Relay terdiri dari 4 komponen dasar yaitu :
- Electromagnet (Coil)
- Armature
- Switch Contact Point (Saklar)
- Spring
Berikut ini merupakan gambar dari bagian-bagian Relay :
Kontak Poin (Contact Point) Relay terdiri dari 2 jenis yaitu :
- Normally Close (NC) yaitu kondisi awal sebelum diaktifkan akan selalu berada di posisi CLOSE (tertutup)
- Normally Open (NO) yaitu kondisi awal sebelum diaktifkan akan selalu berada di posisi OPEN (terbuka)
Berdasarkan gambar diatas, sebuah Besi (Iron Core) yang dililit oleh sebuah kumparan Coil yang berfungsi untuk mengendalikan Besi tersebut. Apabila Kumparan Coil diberikan arus listrik, maka akan timbul gaya Elektromagnet yang kemudian menarik Armature untuk berpindah dari Posisi sebelumnya (NC) ke posisi baru (NO) sehingga menjadi Saklar yang dapat menghantarkan arus listrik di posisi barunya (NO). Posisi dimana Armature tersebut berada sebelumnya (NC) akan menjadi OPEN atau tidak terhubung. Pada saat tidak dialiri arus listrik, Armature akan kembali lagi ke posisi Awal (NC). Coil yang digunakan oleh Relay untuk menarik Contact Poin ke Posisi Close pada umumnya hanya membutuhkan arus listrik yang relatif kecil.
Arti Pole dan Throw pada Relay
Karena Relay merupakan salah satu jenis dari Saklar, maka istilah Pole dan Throw yang dipakai dalam Saklar juga berlaku pada Relay. Berikut ini adalah penjelasan singkat mengenai Istilah Pole and Throw :
- Pole : Banyaknya Kontak (Contact) yang dimiliki oleh sebuah relay
- Throw : Banyaknya kondisi yang dimiliki oleh sebuah Kontak (Contact)
Berdasarkan penggolongan jumlah Pole dan Throw-nya sebuah relay, maka relay dapat digolongkan menjadi :
- Single Pole Single Throw (SPST) : Relay golongan ini memiliki 4 Terminal, 2 Terminal untuk Saklar dan 2 Terminalnya lagi untuk Coil.
- Single Pole Double Throw (SPDT) : Relay golongan ini memiliki 5 Terminal, 3 Terminal untuk Saklar dan 2 Terminalnya lagi untuk Coil.
- Double Pole Single Throw (DPST) : Relay golongan ini memiliki 6 Terminal, diantaranya 4 Terminal yang terdiri dari 2 Pasang Terminal Saklar sedangkan 2 Terminal lainnya untuk Coil. Relay DPST dapat dijadikan 2 Saklar yang dikendalikan oleh 1 Coil.
- Double Pole Double Throw (DPDT) : Relay golongan ini memiliki Terminal sebanyak 8 Terminal, diantaranya 6 Terminal yang merupakan 2 pasang Relay SPDT yang dikendalikan oleh 1 (single) Coil. Sedangkan 2 Terminal lainnya untuk Coil.
Selain Golongan Relay diatas, terdapat juga Relay-relay yang Pole dan Throw-nya melebihi dari 2 (dua). Misalnya 3PDT (Triple Pole Double Throw) ataupun 4PDT (Four Pole Double Throw) dan lain sebagainya.
Untuk lebih jelas mengenai Penggolongan Relay berdasarkan Jumlah Pole dan Throw, silakan lihat gambar dibawah ini :
Fungsi-fungsi dan Aplikasi Relay
Beberapa fungsi Relay yang telah umum diaplikasikan kedalam peralatan Elektronika diantaranya adalah :
- Relay digunakan untuk menjalankan Fungsi Logika (Logic Function)
- Relay digunakan untuk memberikan Fungsi penundaan waktu (Time Delay Function)
- Relay digunakan untuk mengendalikan Sirkuit Tegangan tinggi dengan bantuan dari Signal Tegangan rendah.
- Ada juga Relay yang berfungsi untuk melindungi Motor ataupun komponen lainnya dari kelebihan Tegangan ataupun hubung singkat (Short).
Fungsi Dioda and Jenis-jenisnya
Berdasarkan Fungsi Dioda, Dioda dapat dibagi menjadi beberapa Jenis, diantaranya adalah :
- Dioda Penyearah (Dioda Biasa atau Dioda Bridge) yang berfungsi sebagai penyearah arus AC ke arus DC.
- Dioda Zener yang berfungsi sebagai pengaman rangkaian dan juga sebagai penstabil tegangan.
- Dioda LED yang berfungsi sebagai lampu Indikator ataupun lampu penerangan
- Dioda Photo yang berfungsi sebagai sensor cahaya
- Dioda Schottky yang berfungsi sebagai Pengendali
Simbol Dioda
Gambar dibawah ini menunjukan bahwa Dioda merupakan komponen Elektronika aktif yang terdiri dari 2 tipe bahan yaitu bahan tipe-p dan tipe-n :
Prinsip Kerja Dioda
Untuk dapat memperjelas prinsip kerja Dioda dalam menghantarkan dan menghambat aliran arus listrik, dibawah ini adalah rangkaian dasar contoh pemasangan dan penggunaan Dioda dalam sebuah rangkaian Elektronika.
Cara Mengukur Dioda dengan Multimeter
Untuk mengetahui apakah sebuah Dioda dapat bekerja dengan baik sesuai dengan fungsinya, maka diperlukan pengukuran terhadap Dioda tersebut dengan menggunakan Multimeter (AVO Meter).
Cara Mengukur Dioda dengan Multimeter Analog
- Aturkan Posisi Saklar pada Posisi OHM (Ω) x1k atau x100
- Hubungkan Probe Merah pada Terminal Katoda (tanda gelang)
- Hubungkan Probe Hitam pada Terminal Anoda.
- Baca hasil Pengukuran di Display Multimeter
- Jarum pada Display Multimeter harus bergerak ke kanan
- Balikan Probe Merah ke Terminal Anoda dan Probe Hitam pada Terminal Katoda (tanda gelang).
- Baca hasil Pengukuran di Display Multimeter
- Jarum harus tidak bergerak.
**Jika Jarum bergerak, maka Dioda tersebut berkemungkinan sudah rusak.
Motor Listrik DC atau DC Motor ini menghasilkan sejumlah putaran per menit atau biasanya dikenal dengan istilah RPM (Revolutions per minute) dan dapat dibuat berputar searah jarum jam maupun berlawanan arah jarum jam apabila polaritas listrik yang diberikan pada Motor DC tersebut dibalikan. Motor Listrik DC tersedia dalam berbagai ukuran rpm dan bentuk. Kebanyakan Motor Listrik DC memberikan kecepatan rotasi sekitar 3000 rpm hingga 8000 rpm dengan tegangan operasional dari 1,5V hingga 24V. Apabile tegangan yang diberikan ke Motor Listrik DC lebih rendah dari tegangan operasionalnya maka akan dapat memperlambat rotasi motor DC tersebut sedangkan tegangan yang lebih tinggi dari tegangan operasional akan membuat rotasi motor DC menjadi lebih cepat. Namun ketika tegangan yang diberikan ke Motor DC tersebut turun menjadi dibawah 50% dari tegangan operasional yang ditentukan maka Motor DC tersebut tidak dapat berputar atau terhenti. Sebaliknya, jika tegangan yang diberikan ke Motor DC tersebut lebih tinggi sekitar 30% dari tegangan operasional yang ditentukan, maka motor DC tersebut akan menjadi sangat panas dan akhirnya akan menjadi rusak.
Pada saat Motor listrik DC berputar tanpa beban, hanya sedikit arus listrik atau daya yang digunakannya, namun pada saat diberikan beban, jumlah arus yang digunakan akan meningkat hingga ratusan persen bahkan hingga 1000% atau lebih (tergantung jenis beban yang diberikan). Oleh karena itu, produsen Motor DC biasanya akan mencantumkan Stall Current pada Motor DC. Stall Current adalah arus pada saat poros motor berhenti karena mengalami beban maksimal.
Bentuk dan Simbol Motor DC
Prinsip Kerja Motor DC
Terdapat dua bagian utama pada sebuah Motor Listrik DC, yaitu Stator dan Rotor. Stator adalah bagian motor yang tidak berputar, bagian yang statis ini terdiri dari rangka dan kumparan medan. Sedangkan Rotor adalah bagian yang berputar, bagian Rotor ini terdiri dari kumparan Jangkar. Dua bagian utama ini dapat dibagi lagi menjadi beberapa komponen penting yaitu diantaranya adalah Yoke (kerangka magnet), Poles (kutub motor), Field winding (kumparan medan magnet), Armature Winding (Kumparan Jangkar), Commutator (Komutator) dan Brushes (kuas/sikat arang).
Pada prinsipnya motor listrik DC menggunakan fenomena elektromagnet untuk bergerak, ketika arus listrik diberikan ke kumparan, permukaan kumparan yang bersifat utara akan bergerak menghadap ke magnet yang berkutub selatan dan kumparan yang bersifat selatan akan bergerak menghadap ke utara magnet. Saat ini, karena kutub utara kumparan bertemu dengan kutub selatan magnet ataupun kutub selatan kumparan bertemu dengan kutub utara magnet maka akan terjadi saling tarik menarik yang menyebabkan pergerakan kumparan berhenti.Untuk menggerakannya lagi, tepat pada saat kutub kumparan berhadapan dengan kutub magnet, arah arus pada kumparan dibalik. Dengan demikian, kutub utara kumparan akan berubah menjadi kutub selatan dan kutub selatannya akan berubah menjadi kutub utara. Pada saat perubahan kutub tersebut terjadi, kutub selatan kumparan akan berhadap dengan kutub selatan magnet dan kutub utara kumparan akan berhadapan dengan kutub utara magnet. Karena kutubnya sama, maka akan terjadi tolak menolak sehingga kumparan bergerak memutar hingga utara kumparan berhadapan dengan selatan magnet dan selatan kumparan berhadapan dengan utara magnet. Pada saat ini, arus yang mengalir ke kumparan dibalik lagi dan kumparan akan berputar lagi karena adanya perubahan kutub. Siklus ini akan berulang-ulang hingga arus listrik pada kumparan diputuskan.
Sensor Infrared
Sensor Infrared adalah komponen elektronika yang dapat mendeteksi benda ketika cahaya infra merah terhalangi oleh benda. Sensor infared terdiri dari led infrared sebagai pemancar sedangkan pada bagian penerima biasanya terdapat foto transistor, fotodioda, atau inframerah modul yang berfungsi untuk menerima sinar inframerah yang dikirimkan oleh pemancar.
Prinsip Kerja Sensor Infrared:
Bentuk dan Simbol IC Op-Amp
Berikut dibawah ini adalah Simbol dan bentuk IC Op-Amp pada umumnya.
Terminal yang terdapat pada Simbol Op-Amp (Operational Amplifier/penguat operasional) diantaranya adalah :
- Masukan non-pembalik (Non-Inverting) +
- Masukan pembalik (Inverting) –
- Keluaran Vout
- Catu daya positif +V
- Catu daya negatif -V
Karakteristik Op-Amp (Operational Amplifier)
Karakteristik Faktor Penguat atau Gain pada Op-Amp pada umumnya ditentukan oleh Resistor Eksternal yang terhubung diantara Output dan Input pembalik (Inverting Input). Konfigurasi dengan umpan balik negatif (Negative Feedback) ini biasanya disebut dengan Closed-Loop configuration atau Konfigurasi Lingkar Tertutup. Umpan balik negatif ini akan menyebabkan penguatan atau gain menjadi berkurang dan menghasilkan penguatan yang dapat diukur serta dapat dikendalikan. Tujuan pengurangan Gain dari Op-Amp ini adalah untuk menghindari terjadinya Noise yang berlebihan dan juga untuk menghindari respon yang tidak diinginkan. Sedangkan pada Konfigurasi Lingkar Terbuka atau Open-Loop Configuration, besar penguatannya adalah tak terhingga (∞) sehingga besarnya tegangan output hampir atau mendekati tegangan Vcc.
Secara umum, Operational Amplifier (Op-Amp) yang ideal memiliki karakteristik sebagai berikut :
- Penguatan Tegangan Open-loop atau Av = ∞ (tak terhingga)
- Tegangan Offset Keluaran (Output Offset Voltage) atau Voo = 0 (nol)
- Impedansi Masukan (Input Impedance) atau Zin= ∞ (tak terhingga)
- Impedansi Output (Output Impedance ) atau Zout = 0 (nol)
- Lebar Pita (Bandwidth) atau BW = ∞ (tak terhingga)
- Karakteristik tidak berubah dengan suhu
Pada dasarnya, kondisi Op-Amp ideal hanya merupakan teoritis dan hampir tidak mungkin dicapai dalam kondisi praktis. Namun produsen perangkat Op-Amp selalu berusaha untuk memproduksi Op-Amp yang mendekati kondisi idealnya ini. Oleh karena itu, sebuah Op-Amp yang baik adalah Op-Amp yang memiliki karakteristik yang hampir mendekati kondisi Op-Amp Ideal.
Tidak ada komentar:
Posting Komentar